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The effective use of limited resources for controlling spreading
processes on networks is of prime significance in diverse contexts,
ranging from the identification of “influential spreaders” for max-
imizing information dissemination and targeted interventions in
regulatory networks, to the development of mitigation policies
for infectious diseases and financial contagion in economic sys-
tems. Solutions for these optimization tasks that are based purely
on topological arguments are not fully satisfactory; in realistic
settings, the problem is often characterized by heterogeneous
interactions and requires interventions in a dynamic fashion over
a finite time window via a restricted set of controllable nodes.
The optimal distribution of available resources hence results from
an interplay between network topology and spreading dynam-
ics. We show how these problems can be addressed as particular
instances of a universal analytical framework based on a scalable
dynamic message-passing approach and demonstrate the efficacy
of the method on a variety of real-world examples.
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Spreading corresponds to omnipresent processes describing
a vast number of phenomena in social, natural, and tech-

nological networks (1–4) whereby information, viruses, and fail-
ures propagate through their edges via the interactions between
individual constituents. Spreading cascades have a huge impact
on the modern world, be it negative or positive. An 11-min
power grid disturbance in Arizona and California in 2011 led
to cascading outages and left 2.7 million customers without
power (5). As many as 579,000 people around the world could
have been killed by the H1N1 influenza pandemic, character-
ized by a rapid spreading through the global transportation net-
works (6). The US economy losses from the 2008 financial crisis
resulting from cascading bankruptcies of major financial institu-
tions are estimated at $22 trillion (7). Therefore, it is not sur-
prising that efficient prediction and control of these undesired
spreading processes are regarded as fundamental questions of
paramount importance in developing policies for optimal place-
ment of cascade-preventing devices in power grid, real-time dis-
tribution of vaccines and antidotes to mitigate epidemic spread,
regulatory measures in interbanking lending networks, and other
modern world problems, such as protection of critical infrastruc-
tures against cyberattacks and computer viruses (8).

On the other hand, spreading processes can also be consid-
ered beneficial. The Ice Bucket Challenge campaign in social
networks raised $115 million donations to the ALS Association
fighting amyotrophic lateral sclerosis, in particular due to a sig-
nificant involvement of celebrities acting as “influencers” (9). In
the context of political campaigning, there are already winners
(10, 11) and losers, and this division is likely to become more
pronounced and critical in the future (12). Winners are those
who use communication and social networks effectively to set
the opinions of voters or consumers, maximizing the impact of
scarce resources such as activists or advertisements by apply-
ing control to the most influential groups of nodes at the right

time, while losers will spend their resources suboptimally, rely-
ing on intuition and serendipity. Additional examples of domains
where optimal resource allocation plays a crucial role in enhanc-
ing the effect of spreading include viral marketing campaigns
(13); targeted chemically induced control of dynamic biological
processes (14); drug discovery (15); and even gaining military
advantage through the propagation of disinformation (16). All
of these applications share several important common properties
such as restricted budget, finite time windows for dynamical con-
trol interventions, and the need for fast and scalable optimization
algorithms which can be deployed in real time.

There exists a large body of work on optimal resource deploy-
ment in various spreading settings. A widely addressed formu-
lation focuses on identifying influential spreaders (i.e., nodes
that play an important role in the dynamical process). Iden-
tification is often done by using different centrality measures
related to the topology of the underlying interaction network,
including selection strategies based on high-degree nodes (17),
neighbors of randomly selected vertices (18), betweenness cen-
trality (19), random-walk (20), graph-partitioning (21), and
k-shell decomposition (22), to name a few. It is quite natural
that algorithms based exclusively on topological characteristics
appear to have variable performance depending on particular
network instances and dynamical models used (23, 24). Another
line of work consists in studying the nondeterministic polyno-
mial time (NP)-complete problem of network dismantling (25–
27): The underlying reasoning is that removal of key nodes
fragments the giant component and hence is likely to prevent
a global percolation of the contagion. The localization of an
optimal immunization set has been addressed by using a belief
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propagation algorithm built on top of percolation-like equations
for SIR (susceptible, infected, recovered) and SIS (susceptible,
infected, susceptible) models (28), based on cavity method tech-
niques developed previously for deterministic threshold models
(29, 30). This formulation is close to the problem of finding opti-
mal seeds [i.e., the smallest set of initial nodes which maximizes
the spread asymptotically (13)]. It was rigorously analyzed (31,
32) for two simple diffusion models with a special submodular-
ity property, independent cascade (IC) and linear threshold, and
was shown to be NP-hard for both. A greedy algorithm based
on a sampling subroutine has been explored for the IC model
(33) in the setting of a finite time horizon. For other spread-
ing models, the impact maximization problem at finite time and
resources has been addressed in the setting of optimal control
as reported in a recent survey (34). However, only deterministic
mean-field dynamics have been considered so far; this approxi-
mation ignores the topology of the specific network considered
and yields nondistributed solutions to the control problem.

All of these techniques consider the problem of static (open-
loop) resource allocation, preplanned at some initial time. A
less explored direction consists of developing an online policy of
assigning a limited remedial budget dynamically based on real-
time feedback, also known as a closed-loop control. The impact
of vaccination of the largest degree nodes or of those with the
largest number of infected neighbors was investigated in refs.
35 and 36, while an alternative strategy is focused on the largest
reduction in infectious edges (37). Finally, an online policy based
on solution of the minimal maxcut problem was introduced (38),
where optimization is carried out with respect to the expected
time to extinction of the SIS epidemic.

We introduce a general optimization formulation which
accommodates both dynamical and topological aspects of the
problem and which allows for a broad range of objectives. The
framework facilitates the optimization of objective functions
beyond the maximization or minimization of the spread, includ-
ing: targeting specific nodes at specific times given a subset of
accessible nodes; a limited global budget, possibly distributed
over time; and an optimal dynamic vaccination strategy using
feedback from the spreading process. The problem is stated in
a dynamical control setting with finite-time horizon that requires
an explicit solution of the dynamics, which is addressed via a dis-
tributed message-passing algorithm. We test the efficacy of the
method on particular synthetic optimization problems as well as
on a set of real-world instances.

Model
A large number of spreading models have been suggested in
the literature to describe stochastic dynamical processes in epi-
demiology, information and rumor propagation, and cascades
in biological and infrastructure networks (2–4). They all share
the same common features: The nodes transition from inactive
to active state due to spontaneous activation mechanism associ-
ated with the nodes themselves or due to interactions with active
neighbors through the network edges. As an illustration of our
approach, we have chosen a popular stochastic spreading process
known as the SIR model, which is often used to describe propa-
gation of infectious diseases or information spreading (2). More
precisely, we consider a modified version of the discrete-time
SIR model defined as follows. A node i in the interaction graph
G = (V ,E), where V denotes the set of nodes and E is the set
of pairwise edges, can be found at time step t in either of three
states σt

i : “susceptible” σt
i =S , “infected” σt

i = I or “recovered”
σt
i =R. At each time step, an infected (or, depending on the

application domain, informed or active) individual i can transmit
the activation signal to one of its susceptible (respectively, unin-
formed or inactive) neighbors j with probability αij , associated
with the edge connecting them. Independently of the interaction
between nodes, a node i in state S at time t can turn active,

assuming state I with probability νi(t), or spontaneously become
recovered (uninterested, protected) with probability µi(t). The
first mechanism corresponds to a node activation due to an exter-
nal influence such as advertisement in the context of informa-
tion spreading. In the case of the epidemic spreading, the second
mechanism models the effect of vaccination: Once a node goes to
the protected R state, it becomes immune to the infection at all
times. These probabilistic transmission rules at each time step t
can be summarized using the following schematic rules (depicted
in Fig. S1):

S(i) + I (j )
αji−−→ I (i) + I (j ), [1]

S(i)
νi (t)−−−→ I (i), S(i)

µi (t)−−−→ R(i). [2]

In the definition of the dynamic rules [1] and [2], νi(t) and µi(t)
represent control parameters we could manipulate with a cer-
tain degree of freedom defined by a particular instance of the
problem. Notice that these control parameters act in opposite
directions, expediting or hindering the propagation process. In
all examples considered, we typically study either the susceptible,
infected (SI) model with the ν-mechanism as a paradigm for the
propagation of information, or the modified SIR dynamics with
the vaccination µ-mechanism as a model of the epidemic spread-
ing. In what follows, we assume that the spreading couplings αij

are known (or can be estimated) and are fixed in time. In some
applications, αij may vary in time (e.g., this is true for temporal
networks) or may represent a set of control parameters them-
selves. We outline such scenarios in Discussion; the optimization
scheme presented below can be straightforwardly generalized to
include time-varying and edge-related control parameters. How-
ever, for simplicity, we will only present optimization involving
node-related control parameters.

To quantify the success of the spreading process, one may look
for instance at the expected spread (the total number of infected
nodes) at final time horizon T , S(T ), given by

S(T ) = E

[∑
i∈V

1[σT
i = I ]

]
=
∑
i∈V

P i
I (T ), [3]

where the expectation is taken with respect to the realization of
the stochastic dynamics and P i

I (T ) denotes the marginal proba-
bility of node i to be found in state I at time T . The quantities
P i

S (T ) and P i
R(T ) can be defined in a similar way for the suscep-

tible and recovered states, respectively. Hence, it is important to
understand how to compute approximately the marginal proba-
bilities P i

σ(t) on a given network, with σ representing the corre-
sponding state; note that in the general case, an exact evaluation
of marginals in the SIR model is an NP-hard problem (39). We
use the recently introduced dynamic message-passing (DMP)
equations (40–42), which provide estimates of the probabilities
P i
σ(t) with a linear computational complexity in the number of

edges and time steps. These equations are derived under the
assumption of a locally tree-like network and provide asymptoti-
cally exact estimates on sparse random graphs. When applied to
real-world loopy networks, the DMP algorithm typically yields an
accurate prediction of marginal probabilities as validated empir-
ically (42) for a large class of spreading models on real-world
networks. In Methods, we provide an intuitive derivation of the
corresponding DMP equations for the considered modified SIR
model. An example of the DMP performance on real-world net-
works is provided in Fig. 1, where the method predictions are
compared with values obtained through extensive Monte Carlo
simulations of the SIR dynamics on a network of flights between
major US hubs (a detailed description of this dataset is provided
below and in SI Text). The accuracy of marginals estimation sup-
ports the use of the DMP equations at the core of our optimiza-
tion algorithm.
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Fig. 1. Performance of DMP equations for the modified SIR model on a net-
work of flights between major US airports. The network represents M = 383
flight routes between the N = 61 largest US hubs. The weights αij are pro-
portional to the average number of transported passengers on each route
and are distributed in the interval [0.05, 0.5]; νi and µi are generated at ran-
dom in the range [0, 0.1]. The scatter plot represents marginal probabilities
Pi

I (T) obtained from the DMP equations and by averaging over 107 Monte
Carlo (MC) simulations. There is one randomly selected active node at the
initial time, and the dynamics is simulated for t = 5 time steps.

Optimization Framework
We formulate the dynamic allocation of resource as a general
optimization problem with respect to an objective function O
and a set of constraints associated with the budget of avail-
able resources B, accessible values of control parameters P , ini-
tial conditions I, and the dynamical model equations D. We
use the Lagrangian formulation of the constrained optimization
problem:

L = O︸︷︷︸
objective

+B + P + I +D︸ ︷︷ ︸
constraints

. [4]

Let us discuss the form of each of the terms in the expression [4].
O: Many objective functions of interest relate to the delivered

information at particular times defined for each node. So, for the
general case we define:

O = E

[∑
i∈U

1[σti
i = I ]

]
=
∑
i∈U

P i
I (ti), [5]

where ti is the required activation time for node i and the sum is
over the subset of nodes U ⊂ V that is required to be activated.
We refer to this general formulation as the targeting problem.
The popular problem of maximizing the total spread S(T ) is a
special case whereby U =V and ti =T for all i ∈V .
B: In many relevant situations, resources are not fully available

at a given time, but rather become available on the fly, and their
amount may vary across the time steps. For example, it takes
some time to develop and produce the vaccines, or the advertise-
ment budget can be allocated in stages depending on the success
of the campaign. Hence, we define the budget constraints in the
following form:∑

i∈V

νi(t) = Bν(t),
∑
i∈V

µi(t) = Bµ(t), [6]

where Bν(t) and Bµ(t) denote the available total budget for
the control parameters νi(t) (spontaneous infection) and µi(t)
(recovery through vaccination) at time t . The constraint B reads

B =

T−1∑
t=0

λνB (t)

[∑
i∈V

νi(t)− Bν(t)

]
, [7]

with a similar expression for the parameters µi(t), where λνB (t)
and λµB (t) are the associated Lagrange multipliers, respectively.
Allocation of budget only at the initial time corresponds to the
optimal seeding problem.
P : In an unrestricted scenario, where all nodes are accessible,

control parameters associated with node i , νi(t) and µi(t) may

take arbitrary values from zero to one depending on total budget.
However, in realistic situations access level to different nodes
may differ: For example, only a subset W ⊆V of nodes may be
controllable together with additional restrictions on parameter
values. The parameter block P is introduced to enforce parame-
ters νi(t) to take values in the range [νti , ν

t
i ] at each time step.

This can be accomplished with the help of barrier functions,
widely used in constrained optimization, assuming the form

P = ε

T−1∑
t=0

∑
i∈V

(
log
[
νi(t)− νti

]
+ log

[
νti − νi(t)

])
, [8]

where ε is a small regularization parameter chosen to minimize
the impact on the objective O in the regime of allowed νi(t)
values, away from the borders. An equivalent expression can be
written for the constraints on the µi(t) values.
I and D: Finally, the constraints I and D enforce the given

initial conditions and dynamics of the system via the associated
Lagrange multipliers. For example, if no active individuals are
present at the initial time, then we set P i

I (0)= 0 for all nodes
using the constraint set I; if some infected or recovered nodes
are present, they assume an initial value 1 for the respective
marginal probabilities. The set D encodes the evolution of the
marginal probabilities with the DMP equations, as explained in
Methods.

The extremization of the Lagrangian [4] is done as follows.
Variation of L with respect to the dual variables (Lagrange mul-
tipliers) results in the DMP equations starting from the given
initial conditions, while derivation with respect to the primal
variables (control and dynamic parameters) results in a second
set of equations, coupling the Lagrange multipliers and the pri-
mal variable values at different times. We solve the coupled sys-
tems of equations by forward–backward propagation, a widely
used method in control, as well as for learning and optimiza-
tion in artificial neural networks (43), detailed in Methods and
schematically illustrated in Fig. 2. This method has a number of
advantages compared with other localized optimization proce-
dures such as gradient descent and its variants. In particular, it is
simple to implement, is of modest computational complexity due
to the gradient-free nature of the optimization, does not require
any adjustable parameters, and is less prone to being trapped in
local minima since the optimization is performed globally (44).

In what follows, we illustrate this general optimization frame-
work on three practical case studies: driving dynamic trajectory
of a spreading process in time through a set of targets (targeting
problem), selecting an optimal set of initial seeds for a maximum
dissemination of influence or information (influence maximiza-
tion problem), and online closed-loop distribution of vaccines for
stabilizing the spread of an infection (online mitigation of epi-
demic spreading). In each of these examples, we show how our
algorithm can be used to solve particular problems from social
or biological sciences, compare the performance to existing tech-
niques (where competing algorithms exist), and indicate a num-
ber of other prospective applications.

Case Study: Guiding Spreading Through Desired Targets
Targeting is quite a general task and can provide a useful prob-
lem formulation in many application domains where the under-
lying dynamics is governed by a set of nonlinear differential or
difference equations. The nature of these applications can be
very diverse: They range from targeting biochemical cascades
to treat cancer (45, 46) and controlling the trajectories of brain
dynamics among states characterized by the activation of various
cognitive systems (47) to maximizing the species abundance by
targeted interventions in food webs (48) and ecological mutual-
istic networks (49). In the context of spreading processes, target-
ing tasks appear in several problems of social importance: online
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Fig. 2. Schematic representation of the forward–backward propagation
algorithm. The optimization scheme is presented in the case of the SI model
with spontaneous activations due to the ν-mechanism. The state of the net-
work is presented at each time step; nodes to be targeted at particular time
steps are colored in blue. Given the current values of the control parameters
{νi(t)}i∈V , the marginal probabilities {Pi(t)}i∈V are computed in the for-

ward propagation stage through the exchange of messages {θi→j(t)}(ij)∈E
along the edges of the graph between neighboring nodes, according to the
update rules of the DMP equations. In the backward propagation phase,
the nodes exchange the dual messages, represented by the Lagrange mul-
tipliers {λi→j(t)}(ij)∈E associated with the primal variables. At each time
step, the parameters {νi(t)}i∈V are updated according to the backward
dynamic equations, subject to the budget constraints, depicted by orange
squares, and the targeting requirements. The two stages are iterated until
convergence of the algorithm to a fixed point, or for a predefined number
of steps.

optimal distribution of the mitigation budget prioritizing the “too
big to fail” financial institutions due to the financial contagion
(50) modeled as a spreading process (51, 52); strategy for the
active cyber defense dynamics (53) based on spreading “benign”
worms (54) for targeting the infected computers and servers;
and development of the optimal policy (55) for the accelera-
tion of the diffusion of innovations (3). Let us also mention that
targeting can provide algorithms to solve a number of related
problems. For instance, identifying the origin of the spreading
process from measurements at sparsely located sensors at dif-
ferent times (56) is a difficult problem that has been addressed
by other approaches (57, 58), but can be equally viewed as opti-
mally allocating a budget at time 0 to target the sensor nodes at
specific times that correspond to the times when measurements
were taken.

Despite a wide applicability of the targeting task, until now,
no general algorithm is known to drive efficiently the activation
process through desired states. In this section, we illustrate the
performance of the DMP approach using the general targeting
formulation, one of the features of the suggested framework. As
a toy example, we consider disinformation spreading on a small
network extracted from the 9/11 case study of terrorist asso-
ciations, representing the established trusted contacts between

the hijackers (59). A number of studies suggested methods for
destabilizing covert networks; see refs. 60 and 61 for a literature
survey. Our rationale in using this example is the ability to
demonstrate the targeted activation of nodes at given times,
which corresponds to the intentional exposure of the respec-
tive individual to misinformation, and considered as one of the
protective measures undertaken by the counterterrorism intel-
ligence (62). The spontaneous activation parameters have the
interpretation of an aggregated influence [e.g., through coun-
ternarratives diffused through the social media by external
operatives and special agencies such as the Center for Strategic
Counterterrorism Communications (63)]; the resources for such
interventions are limited by a certain budget per time step. In
the original study (59), the networks of terrorist contacts have
been analyzed from the leadership identification perspective: A
removal of just several nodes is sufficient to break the network.
In our example, the targets specified at each time step may reflect
the order of priority in which the nodes should be influenced, in
particular those having unique skills for the planned operation
(e.g., pilots in the 9/11 example); similar argument has been put
forward in the study of the criminal networks (64).

More specifically, we assume that the spreading dynamics
follows a particular case of the dynamical model with µi(t)=
0 ∀ t and i ∈V , corresponding to the SI model with controlled
spontaneous transition to the informed state I due to exter-
nal influence via the control parameters νi(t). The activation
of nodes is required in a predefined priority order, target-
ing selected nodes at specific times. The DMP-based optimiza-
tion scheme converges to a unique optimal solution within a
few forward–backward iterations. The resources are allocated
dynamically over time such that the activation path meets the
targeting requirements, as reported in Fig. 3: P i

I (ti)> 0.95 is
achieved at all nodes, with the majority of nodes targeted with
probability one. Our algorithm is computationally efficient and
can be applied to very large network instances, as we show below.

Case Study: Influence Maximization via Seed Selection
The seeding problem, which deals with the optimization over the
initial condition only, can be viewed as a particular instance of
the targeting formulation. A classical formulation of the seed-
ing task consists of finding the best K nodes which, when acti-
vated at initial time, would lead to the maximum spread at time
T (31). With the DMP approach being inherently probabilistic,

Fig. 3. Optimal targeting with the DMP algorithm on a small network of ter-
rorist associations. Edge thickness indicates the strength of the correspond-
ing pairwise transmission probability αij , generated uniformly at random in
the interval [0, 1]. The size of nodes relates to the time activation require-
ments: Large nodes should be activated by the corresponding time. In this
example, two chosen nodes should be activated at time t = 2, another two
nodes by time t = 4, three particular nodes by time t = 6, and all remaining
nodes by time t = 9; available budget for each time step has been fixed to
Bν (t) = 0.1 N. Color intensity (gradually from white to black) indicates the
value of the marginal probabilities Pi

I (t) which result from the dynamics using
the optimal distribution of resources provided by the DMP algorithm. The
visualization has been created by using the MuxViz software (65).
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we consider a slightly more general (and arguably more realistic
in applications) space of initial conditions. Assume that the ini-
tial condition is generated probabilistically, so that each node i at
the initial time is infected independently with probability pi ; the
conventional formulation is recovered when pi take only binary
values, zero or one, and

∑
i∈V pi =K . In the considered formu-

lation involving control parameters νi(t), we optimize over the
set of arbitrary probabilities pi ∈ [0, 1]: Setting the initial condi-
tions for such pi at time t = 1 is equivalent to fixing the values
of the parameters νi(0) at the auxiliary time t =0 in the system
where all nodes are in state S . Therefore, an optimal distribu-
tion of the budget Bν(0) (not necessarily integer) at time t =0
would thus lead through spontaneous infection to the maximum
spread S(T + 1). In SI Text, we present an example of the influ-
ence maximization problem in a network of relations between
political parties illustrated in Fig. S2. As in the previous example
for the targeting problem, the forward–backward optimization
scheme quickly converges to a unique ground-truth optimal solu-
tion, which in this small test case can be established by a direct
maximization of the explicit symbolic form of the objective func-
tion O; see Fig. S3 for additional details. This small-scale exam-
ple hence serves as a validation of our optimization procedure.

A large number of topology-based algorithms have been
designed to address the seeding problem, mostly in the case of
the homogeneous transmission probabilities (17–22, 25, 28). To
test the efficacy of the DMP-optimization approach on large-
scale instances, we compare its performance to that of popular
heuristics for the restricted setting of near-deterministic spread-
ing. The choice for this setting is motivated by the fact that one
can devise a simple algorithm providing a good approximation to
the ground-truth solution, which can serve as a benchmark for
comparing different algorithms, and a number of centrality tech-
niques (17, 22, 25) selecting combinations of high-degree nodes
should perform well in this case; see SI Text for a detailed dis-
cussion of methods used for comparison, implementations, and
additional remarks. The results of comparisons on a number of
real-world and synthetic networks of different sizes and topolo-
gies are summarized in Table 1 and Fig. 4. In SI Text, we also dis-
cuss additional numerical results for the case of heterogeneous
couplings, assessing the performance of the DMP method com-
pared with a natural generalization of centrality algorithms to the
heterogeneous setting. The main message emerging from these
tests can be formulated as follows: Although the DMP method
has not been optimized for the seeding problem and does not rely
explicitly on topological features such as targeting high-degree
nodes, we find that it is close to the best-performing heuristics

Table 1. Comparison of the DMP algorithm for the seeding problem in the setting of near-deterministic dynamics with popular
heuristics on various real-world and artificial networks

Network N M Random HDA k-shell CI2 CI4 Uniform DMP Covering

Road EU 1174 1417 0.305 0.480 0.163 0.500 0.468 0.324 0.513 0.565
Protein 2361 6646 0.736 0.863 0.772 0.861 0.838 0.752 0.856 0.903
US power grid 4941 6594 0.367 0.602 0.206 0.605 0.565 0.397 0.601 0.684
GR collaborations 5242 14,484 0.565 0.644 0.291 0.660 0.658 0.634 0.710 0.796
Internet 22,963 48,436 0.880 0.998 0.987 0.996 0.994 0.891 0.972 0.995
Web-sk 121,422 334,419 0.645 0.833 0.242 0.751 0.734 0.699 0.837 0.937
Scale-free 500,000 397,848 0.214 0.398 0.220 0.372 0.323 0.215 0.321 0.427
Erdős-Rényi 500,000 750,000 0.447 0.681 0.494 0.677 0.679 0.446 0.704 0.719

First three columns on the left of the table provide topological information on the networks considered (66–69). In the remaining columns on the right
are presented values of the normalized total spread S(T)/N at time T = 3, given homogeneous transmission probabilities αij = α = 0.99 and the total
available budget Bν (0) = 0.05 N, for the different algorithms: assignment to randomly-selected nodes, an adaptive version of the high-degree strategy
of ref. 17 (HDA) and of the k-shell decomposition (22), collective influence (CI)l (25) (with l = 2 and l = 4), uniform assignment, the DMP algorithm,
and the Covering algorithm which has a near-optimal performance in this case and serves as a benchmark. Description of these algorithms along with the
implementation details is provided in SI Text. For different test cases, solutions obtained by DMP span the range between delocalized and node-centric
assignments and are on par with the best-performing centrality heuristics. The results presented in this table are graphically summarized in Fig. 4. See SI
Text and Table S1 for analogous comparisons in the case of heterogeneous couplings.

in all cases, showing a consistently good performance. This sug-
gests that the DMP algorithm performs well also for more gen-
eral dynamic resource allocation problems for which other prin-
cipled methods do not exist, such as targeting problems described
in the previous section and global-time closed-loop control poli-
cies discussed further.

An interesting observation is that in the case of large network
instances, the forward–backward iteration scheme no longer con-
verges to a unique optimum as in the case of small networks con-
sidered previously. Instead, the algorithm makes large “jumps”
on the manifold representing different control-parameter dis-
tributions that obey the budget constraints [6]: This is a man-
ifestation of the NP-hardness of the problem with a more com-
plex optimization landscape and a multitude of local optima. The
presence of many solutions with comparable costs is an indica-
tion that it is arguably more appropriate to view the different
seeding sets as a collective phenomenon, rather than assigning
“influence” measure to individual nodes. In terms of computa-
tional complexity, solving the dynamics with DMP is linear in
T and |E |; the number of forward–backward iterations is typi-
cally small and can be controlled, as explained in Methods. Let us
also point out that the DMP-estimated marginals provide a nat-
ural and convenient measure for comparing the performance of
different algorithms in the finite time horizon setting, especially
on large graphs with millions of nodes where running extensive
Monte Carlo simulations is computationally prohibitive.

Case Study: Online Mitigation of Epidemic Spreading
To illustrate the suitability of the DMP algorithm to online
deployment of resources in a dynamic setting with feedback, we
use a prototypical example: developing an effective mitigation
policy for confining an infectious disease—a practical and chal-
lenging question of public concern. A modified SIR model with
vaccination is an appropriate dynamic model in this case, where
the νi(t) variables are set to zero, and the parameters µi(t) play
the role of vaccination control, allowing the susceptible nodes to
assume a protected state R. The vaccination mechanism mod-
eled via an S to R transition has been studied in the context
of the SIR-type spreading models in refs. 70 and 71. Note that
extension to other spreading models with different vaccination
mechanisms is straightforward, as pointed out in Discussion. In
contrast to the targeting and seeding problems, the initial con-
ditions (origin of the epidemic) are specified in this setting, and
the vaccination budget has to be allocated dynamically accord-
ing to the current state of the spreading process (monitored at
each time step) to suppress the epidemic. The goal is to deploy
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Fig. 4. Comparison of different algorithms for the seeding problem. This
figure summarizes in a graphical form the results of comparisons between
several seeding algorithms for the near-deterministic spreading on a number
of real and synthetic network instances; details and raw numbers are pro-
vided in Table 1. Each algorithm is represented by a circle, centered at the
point with coordinates (x, y), with x being the fraction of test cases for which
the algorithm had the best performance, and y defined as the average “opti-
mality gap” [i.e., average result normalized by the value output by the spe-
cially designed Covering strategy (near-optimal in this setting, as explained
in SI Text and in Fig. S4) for each of the networks studied]. The ideal algo-
rithm for this problem should lie in the right upper corner with coordinates
(1, 1). The size of each circle is inversely proportional to the average rank of
the corresponding algorithm. The high degree adaptive (HDA) policy shows
a slightly lower optimality gap compared with DMP; nevertheless, overall,
the DMP approach (which is not specifically optimized for the seeding prob-
lem) demonstrates a consistently good performance; this is a premise for its
proper performance in general large-scale general dynamic resource alloca-
tion problems.

the resources optimally so that the total number of infected
nodes S(T ) at the final time is minimized. The assumption of
a time-distributed budget Bµ(t) is highly reasonable due to the
restricted vaccine availability.

Previously developed real-time strategies for mitigating con-
tagion on a given network (35, 37, 38) explored policies that
were based on topological characteristics of the graph under
the assumption of homogeneous transmission probabilities. The
common denominator of existing approaches consists in local
interventions, which ensure the islanding of infected nodes. We
generalize the methods (35, 38) to the case of heterogeneous
transmission probabilities using a “high-risk” (36) ranking of sus-
ceptible nodes at time t according to their probability of getting
infected at the next time step. This measure is defined in our
case as

P t
i (S → I ) = 1−

∏
j∈∂i

(1− αji1[σ
t
j = I ]), [9]

where ∂i denotes the set of neighbors of a susceptible node i . A
reasonable local intervention strategy for benchmarking consists
of distributing the vaccination budget to priority nodes with a
high-risk measure [9]. This algorithm will be referred to as the
greedy strategy.

Several policies can be conceived by using the DMP optimiza-
tion framework. As a reference, we consider the planned deploy-
ment of resources which does not take into account feedback
from an actual realization of the process, but merely follows
the solution of the dynamic resource allocation problem with a
specified initial condition. Two other closed-loop strategies take
into account the real-time information on the spreading pro-
cess, using the seeding formulation as a subroutine: (i) The first,
termed “DMP-greedy,” is close in spirit (but differs in the algo-
rithmic implementation, based here on the DMP optimization

framework) to the greedy algorithm and uses the current state
of the epidemic as the initial condition, aiming to minimize the
spread at the next time step only. (ii) The second uses the full
power of the DMP framework by exploiting the up-to-date infor-
mation available to reinitialize the dynamics at each time step t
for allocating the resources at the next time step t + 1, by run-
ning the optimization procedure for the remaining T − t time
steps. This “DMP-optimal” policy is similar to the planned strat-
egy, but takes advantage of the new information available from
the realization of the process.

We compare these strategies for the case of infection spread-
ing mediated by air traffic, which has been recognized as an
important factor facilitating the spread of infectious diseases (72)
and thus plays a major role in recent world’s pandemics (73).
As a particular example, we study the real-world transporta-
tion network of busiest flight routes between major US airports,
extracted from the Bureau of Transportation Statistics (BTS)
data (74) and depicted in Fig. 5A. The use of the modified SIR
model in this case is justified by the fact that this type of spread-
ing models has been widely used for modeling a traffic-mediated
epidemic (75, 76). We use a plausible assumption that the infec-
tion transmission probability associated with a link between air-
ports is proportional to the number of passengers carried along
this route (see SI Text for a detailed description of the network
and data used). The “vaccination” interventions on this network
can be interpreted as quarantine measures taken in different air-
ports using the updates on the newly infected cases. Indeed, con-
tainment measures and travel restrictions have been pointed out
as important factors limiting the spread of an epidemic (77). In
the simulations, we assume that the epidemic starts at the largest
airport hub of Atlanta.

The comparison of different mitigation algorithms is given in
Fig. 5B, showing the average number of infected sites as a func-
tion of time under different mitigation strategies. As expected,
the DMP-optimal scheme represents the best performing policy,
which leads to stabilization of the expected number of infected
nodes by t = 6, at a lower level compared with the greedy algo-
rithm that optimizes the spread at the next time step only. Notice
that on a short time scale, the greedy algorithm has a slightly bet-
ter performance, which represents a typical situation when local-
ized and immediate optimal decisions lead ultimately to subop-
timal global optimization results; an illustration is provided in
Fig. 5C.

Discussion
We introduce an efficient and versatile optimization framework
for solving dynamic resource allocation problems for spread-
ing processes, which allows for the synthesis of previously stud-
ied settings within a general targeting formulation. This prob-
abilistic framework allows one to study problems that involve
a finite-time horizon, which requires an explicit solution of the
dynamics, the targeting of specific nodes at given times in both
open- and closed-loop setting, as well as scenarios where only a
subset of the nodes is accessible. This is done in our scheme by
using the DMP equations for spreading processes. Although in
this work we focus on examples involving the discrete-time mod-
ified SIR model, the approach can be straightforwardly applied
to the case of continuous dynamics (the continuous formulation
is expounded in SI Text) and to other cascading models, including
but not limited to threshold models (29, 41) and rumor dynamics
(42). Another possible application area of the present framework
relates to systems defined on temporal graphs, where network
dynamics can be encoded into the time-dependent coefficients
αij (t) within the existing framework.

Although we show that the method can be used in the
case where transmission probabilities are uniform and only the
detailed topology of the network is known, its major advan-
tage consists of the ability to incorporate efficiently detailed
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Fig. 5. Online mitigation of air-traffic mediated epidemic on the network of flights between major US hubs. (A) A geographical layout of the air trans-
portation subnetwork extracted from the BTS data (74). The transmission probabilities are indicated by the thickness of the corresponding edges, which are
proportional to the aggregated traffic between airports. Different colors of airports (yellow, red, and green) represent an outcome of a single realization of
the spreading dynamics (nodes in the susceptible, infected, and recovered states, respectively) under the DMP-optimal policy. (B) Comparisons of mitigation
strategies show the average number of infected sites as a function of time, averaged over 100 random realizations of the dynamics, for the different policies.
In the simulations, the epidemic starts at the largest airport hub of Atlanta; a budget of Bµ(t) = 0.05 N is available at each time step, and the objective
is to suppress the epidemic by T = 10. The DMP-optimal algorithm demonstrates the best performance in the number of infected nodes at time T . (C) An
illustration of a radically different decisions taken by the DMP-optimal and greedy algorithms already at the first step of the optimization: The greedy policy
chooses to vaccinate nodes which are most “in danger” at the next time step, while the decision done by the DMP-optimal scheme takes into account the
forecasted evolution of the dynamics.

information on transmission probabilities when such prior infor-
mation is available, or can be either estimated (as in the examples
of flight transportation networks, given above, and Slovene polit-
ical parties, treated in SI Text) or learned from past observations
of the dynamics (78, 79). Despite the global budget constraints
involving all network nodes, the resulting message-passing
scheme is fast and distributed, requiring a number of operations
which grows linearly in time and with respect to the number of
edges in the network. An attractive property of the suggested
framework is its versatility: Instead of optimizing the spread
given a fixed budget, one can minimize the budget needed to
meet certain requirements on the spread, imposed as a constraint
in the Lagrangian formulation. Another interesting scenario is
the optimization over the spreading parameters αij : This formu-
lation is useful in the design of technological networks or for mit-
igation of an epidemic by removing and adding links in the graph.
It would be interesting to apply the presented optimization
scheme to the percolation-type equations describing the asymp-
totic T→∞ limit of the spreading dynamics with heterogeneous
couplings.

The optimization method used is based on changes to the
entire trajectory, instead of taking incremental improvement
steps in the direction of the gradient; thus, the suggested algo-
rithm results in large steps and arguably explores more effec-
tively the parameter space. The fact the optimization is gradient-
free represents an additional advantage from the point of view
of the computational complexity in problems where the gradi-
ent is hard to compute; for instance, in the case of the DMP
equations presented in this work, computation of the gradi-
ent requires O(|E |NT ) operations for the node-related con-
trol parameters, and O(|E |2T ) operations for the edge-related
parameters, which would make the algorithm impractical for
large networks. This property of the optimization scheme makes
it an attractive option for the DMP-based learning algorithms
(78), where the gradient computation represents a scalability bot-
tleneck. The solution of the learning problem in the presence
of hidden nodes together with the introduced targeting formula-
tion would make it possible to construct the DMP-based artificial
learning architectures.

Notice that, in principle, the forward–backward algorithm is
not tailored to the DMP equations paradigm and can be used
in the same context for a broader class of dynamical systems
governed by nonlinear differential equations; however, imple-
menting forward and backward steps through simulation of the
dynamics may significantly increase the computational complex-
ity of the overall algorithm. Another open problem is dealing
with uncertainties within the presented framework. In realistic
applications, the spreading parameters are never known with an
absolute accuracy, but in a certain range, defined by the estima-
tion error. Obviously, the optimization algorithm should be able
to take these uncertainties into account. It would be useful to
develop the robust version of our formulation, in the spirit of the
setting known as robust influence maximization (80, 81).

Methods
DMP Equations. DMP belongs to the family of algorithms derived by using
the cavity method of statistical physics and may be given an interpretation of
passing messages along the graph edges. The obtained marginals are exact
on tree graphs and asymptotically exact on sparse random networks. We pro-
vide an intuitive derivation of the DMP equations for the adopted modified
SIR model, defined by Eqs. 1 and 2. On a given instance of a network, these
equations allow one to compute the marginal probability distributions Pi

σ(t),
where σ ∈{S, I, R} denotes the node state. The first key equation reads:

Pi
S(t) = Pi

S(0)

 t−1∏
t′=0

(1− νi(t
′))(1− µi(t

′))

 ∏
k∈∂i

θ
k→i(t). [10]

It states the probability of node i to be susceptible at time t and is equal to
the probability that i was in the S state at initial time Pi

S(0) and remained so
until time t. It neither changed states by following the ν and µ mechanisms
(in brackets), nor by being infected by a neighbor (final term on right); the
dynamic message θk→i(t) has a meaning of the probability that node k did
not pass an activation message to node i until time t. Strictly speaking, Eq.
10 is only valid on a tree graph; only in this case θk→i(t) are independent
for all k∈ ∂i, so that the corresponding probability is factorized as in Eq.
10. However, in practice, the decorrelation assumption holds to a good pre-
cision on general networks, even with small loops (see ref. 42 for in-depth
discussions and supporting numerical experiments). The quantities θk→i(t)
are updated as follows:

θ
k→i(t) = θ

k→i(t − 1)− αkiφ
k→i(t − 1), [11]
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which corresponds to the fact that θk→i(t) can only decrease if an activation
signal is passed along the directed link (ki); the corresponding probability
equals the product of αki and the dynamic variable φk→i(t − 1), which has
a meaning of the probability that node k is in the state I at time t − 1, but
has not infected node i until time t−1. To simplify further explanations, we
introduce the dynamic messages Pk→i

S (t), Pk→i
I (t) and Pk→i

R (t), which denote
the probabilities that node k is found at time t in the states S, I, or R, respec-
tively, conditioned on node i remaining in state S. Alternatively, these vari-
ables can be thought of as the probabilities of k being susceptible, infected
or recovered on a cavity graph, on which node i has been removed. Formally,

Pk→i
S (t) = Pk

S (0)

( t−1∏
t′=0

(1− νk(t′))(1− µk(t′))

) ∏
l∈∂k\i

θ
l→k(t), [12]

which coincides with the expression [10], except that θi→k(t) is not included
in the product on the right (∂k \ i denotes the set of neighbors of k
without i). We also have

Pk→i
R (t) = Pk→i

R (t − 1) + µk(t − 1)Pk→i
S (t − 1), [13]

which expresses the monotonic increase of Pk→i
R (t) at each time step with

the probability µk(t − 1)Pk→i
S (t − 1), and

Pk→i
I (t) = 1− Pk→i

S (t)− Pk→i
R (t) [14]

due to the normalization of probabilities. We are now ready to formulate
the last relation which leads to the closure of the system of message-passing
equations. The evolution of the message φk→i(t) reads:

φ
k→i(t) = (1− αki)φ

k→i(t − 1) + ∆Pk→i
I (t − 1) [15]

where ∆Pk→i
I (t−1) ≡ Pk→i

I (t)−Pk→i
I (t−1). The physical meaning of Eq. 15

is as follows: φk→i(t) decreases if the activation signal is actually transmitted
(first term) and increases if node k transitions to the state I at the current
time step. Eqs. 10–15 can be iterated in time starting from the given initial
conditions {Pi

S(0), Pi
I (0), Pi

R(0)}i∈V , with

θ
i→j(0) = 1, φ

i→j(0) = δ
σ0

i , I = Pi
I (0). [16]

The marginals Pi
S(t) used throughout the text are obtained by using Eq. 10,

while Pi
I (t) and Pi

R(t) are computed via

Pi
R(t) = Pi

R(t − 1) + µi(t − 1)Pi
S(t − 1), [17]

Pi
I (t) = 1− Pi

S(t)− Pi
R(t). [18]

The computational complexity of the DMP equations for solving the dynam-
ics up to time T is given by O(|E|T), where |E| is the number of edges in the
graph, which makes them scalable to sparse networks with millions of nodes.
For spreading models other than SIR, DMP equations can be systematically
derived from the initial dynamic transition rules, as shown in ref. 42.

Enforcing Dynamical Constraints and Backward Equations. The dynamics D
and initial conditions I constraints are enforced in a similar way to that ofP
and the budget B constraints in Eqs. 7 and 8. To each generic dynamic vari-
able ξi(t) and message χk→i(t), we associate the corresponding Lagrange
multipliers λξi (t) and λχk→i(t), which enforce the relation between dynamic
variables at subsequent times. For instance, the evolution of the quantities
{Pi

R(t)}i∈V in the Lagrangian L is enforced via the term

∑
i∈V

T−1∑
t=0

λ
R
i (t + 1)

[
Pi

R(t + 1)− Pi
R(t)− µi(t)Pi

S(t)
]
.

Variation with respect to the dual variables λξi (t) and λχk→i(t) returns the
forward DMP Eqs. 10–18, while setting to zero the derivative of L with
respect to the primal dynamic variables yields the relations between the
Lagrange multipliers at subsequent times, which we interpret as the back-
ward dynamic equations in our scheme. Similarly to Eqs. 10–15, the back-
ward equations have a distributed message-passing structure with linear
computational complexity O(|E|T) and are used to update the values of con-
trol parameters νi(t) and µi(t) at each iteration, taking into account the bud-
get requirements [6]. Specifically, initializing the control parameters νi(t)
and µi(t) to some arbitrary values (e.g., uniform over all nodes and times),
we first propagate the DMP equations forward in time, up to the horizon
T ; then, using the existing primal parameter values, we fix end-point con-
ditions for the dual parameters and propagate the equations for the dual
parameters backward in time, updating the control parameters respecting
the budget and variation constraints. These two steps are iterated for a pre-
defined number of times or until global convergence of the process.

In the large-scale problems, where the algorithm explores the space of
parameters by hopping from one solution to another, we choose a simple
strategy: We run the forward–backward algorithm for several iterations for
a range of values of the regularization parameter ε, which appears in the P
block, and keep track of the best local optimum which provides the solution
to the optimization problem after a maximum number of iterations (kept
below the desired threshold which determines the computational complex-
ity) is reached. The choice of ε impacts the type of solution obtained: Larger
values of ε correspond to solutions where the budget is disseminated more
uniformly across nodes, while smaller values lead to weight concentration
on particular nodes. Depending on the application and the level of control
over nodes, one type of solution can be preferred to another; this flexibil-
ity represents an attractive feature of the DMP algorithm. An explicit form
of the Lagrangian for the problems considered in this work together with
additional details is given in SI Text.
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51. Paga P, Kühn R (2015) Contagion in an interacting economy. J Stat Mech Theor Exp

2015:P03008.
52. Caccioli F, Shrestha M, Moore C, Farmer JD (2014) Stability analysis of financial conta-

gion due to overlapping portfolios. J Banking Finance 46:233–245.
53. Lu W, Xu S, Yi X (2013) Optimizing Active Cyber Defense in International Conference

on Decision and Game Theory for Security (Springer, New York), pp 206–225.
54. Kephart JO, White SR (1991) Directed-graph epidemiological models of computer

viruses. Proceedings of the IEEE Computer Society Symposium on in Research in Secu-
rity and Privacy IEEE (IEEE, New York), pp 343–359.

55. Maienhofer D, Finholt T (2002) Finding optimal targets for change agents: A com-
puter simulation of innovation diffusion. Comput Math Organ Theor 8:259–280.

56. Pinto PC, Thiran P, Vetterli M (2012) Locating the source of diffusion in large-scale
networks. Phys Rev Lett 109:068702.
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